An official website of the United States government
Here's how you know
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

AFRL/RITQ - Ion References and Useful Links

TRAPPED ION GROUPS AROUND THE WORLD

North America:
David Hanneke (Amherst College) Be+
Hartmut Haffner (Berkeley) Ca+, e-
Steven Olmschenk (Denison University) Ba+, La+2
Ken Brown (Duke) Ca+, Yb+, B+, molecular ions
Jungsang Kim (Duke) Ba+, Yb+
Chris Monroe (Duke) Ba+, Yb+
Michael Chapman (Georgia Tech) Ba+, Th3+, molecular ions
Georgia Tech Research Institute (Atlanta, GA) Yb+, Ca+
Phil Richerme (Indiana University) Yb+
Isaac Chuang (MIT) Sr+
Vladen Vuletic (MIT) Yb+
MIT Lincoln Labs (Lexington, MA) Ca+, Sr+
Paul Hess (Middlebury College) Yb+
NIST Ion Storage Group (Boulder, CO) Be+, Al+, Hg+, Ca+, Mg+, molecular ions
Jiehang Zhang (New York University) Be+
Brian Odom (Northwestern) Ba+, molecular ions
Sandia National Labs (Albuquerque, NM) Yb+, Ca+
Guido Pagano (Rice Univ.) Yb+
Paul Haljan (Simon Fraser University) Yb+
US Air Force Research Lab (Rome, NY) Yb+, Ba+
Qudsia Quraishi (US Army Research Labs) Ba+
Joseph Britton (US Army Research Labs) Ba+, Yb+
Wes Campbell (UCLA) Ba+, Yb+, Be+, BaOCa+, H2O+, C+, molecular ions
Paul Hamilton (UCLA) Ba+
Eric Hudson (UCLA) Ba+, Yb+, Be+, BaOCa+, H2O+, C+, molecular ions
Boerge Hemmerling (UC Riverside) molecular ions
Norbert Linke (Univ. of Maryland) Yb+
David Allcock (Univ of Oregon) Ca+
Andrew Jayich (UC Santa Barbara) Ra+
Amar Vutha (Univ. of Toronto) Nd+
Boris Blinov (Univ. of Washington) Ba+, Yb+
Crystal Senko (Univ. of Waterloo) Ba+
Rajibul Islam (Univ. of Waterloo) Ba+, Yb+
Charles Doret (Williams College) Ca+

Europe:
Michael Drewsen (Aarhus Univ.) Ca+, molecular ions
Caroline Champenois & Martina Knoop (Aix-Marseille Univ.) Ca+
Jonathan Home (ETH Zurich) Ca+, Be+
Clement Lacroute (Femto-st) Yb+
Richard Thompson (Imperial College) Ca+
Laurent Hilico (Laboratoire Kastler Brossel) Be+, H2+
Christian Ospelkaus (Leibniz University) Be+, anti-protons
José Crespo (Max Planck Inst. for Kernphysik) highly charged ions, Be+
Gerd Leuchs (Max Planck Inst. of Light) Yb+
Thomas Udem & Ted Hänsch (MPQ) He+, Be+, Mg+
National Physical Laboratory (Teddington, England) Yb+, Sr+
David Lucas (Oxford Univ.) Ca+, Sr+
Andrew Steane (Oxford Univ.) Ca+, Sr+
Christopher Ballance (Oxford Univ.) Ca+, Sr+
Tim Softly (Oxford Univ.) Ca+, molecular ions
Lukáš Slodička (Palacky Univ.) Ca+
Tanja E. Mehlstäubler (PTB) Yb+, In+
Christian Ospelkaus (PTB) Be+, anti-protons
Ekkehard Peik (PTB) Yb+, Th+
Piet Schmidt (PTB) Al+, Ca+, Mg+, Be+, molecular ions, highly-charged ions
Markus Hennrich (Stockholm University) Sr+
Rene Gerritsma (Univ. of Amsterdam) Yb+
Stefan Willitsch (Univ. of Basel) Ca+, molecular ions
Michael Köhl (University of Bonn) Yb+
Stephan Schiller & Axel Görlitz (Univ. of Düsseldorf) HD+, H2+, Be+
Tobias Schaetz (Univ. of Freiburg) Ba+
Daniel Rodríguez (University of Granada) Ca+
Klaus Jungmann (Univ. of Groningen) Ba+, Ra+
Rainer Blatt (Univ. of Innsbruck) Al+, Ba+, Ca+, Sr+
Tracy Northup (Univ. of Innsbruck) Ca+
Kilian Singer (Univ. of Kassel) Ca+
Ferdinand Schmidt-Kaler (Univ. of Mainz) Ca+, Sr+
Perola Millman & Guidoni Luca (Univ. of Paris Diderot) Sr+
Jürgen Eschner (Univ. of Saarland) Ca+
Christof Wunderlich (Univ. of Siegen) Yb+
Winfried Hensinger (Univ. of Sussex) Yb+
Mathias Keller (Univ. of Sussex) Ca+, molecular ions
Kjeld S.E. Eikema (vrije Universiteit Amsterdam) He+, Ca+
Jeroen Koelemeij (vrije Universiteit Amsterdam) HD+

Asia:
Lu Zehuang (Huazhong Univ. Science & Technology) Al+, Mg+
Masao Kitano (Kyoto University) Yb+
Hiroki Takahashi (Okinawa Instit. Science and Tech.) Ca+
Takashi Mukaiyama (Osaka Univ.) Yb+
Utako Tanaka (Osaka Univ.) Ca+
Kenji Toyoda (Osaka Univ.) Ca+
Kazuhiro Hayasaka (Nat. Instit. of Inf. and Comm. Tech.) Ca+, In+
Ping-Xing Chen (Nat. Univ. of Defense Technology China) Ca+
Murray Barrett (Nat. Univ. of Singapore) Ba+, Lu+
Dzmitry Matsukevich (Nat. Univ. of Singapore) Yb+, SiO+
Manas Mukherjee (Nat. Univ. of Singapore) Ba+
Sadiq Rangwala (Raman Research Institute) Rb+
Dong-il Dan Cho (Seoul National Univ.) Yb+
Taehyun Kim (Seoul National Univ.) Yb+
Moonjoo Lee (Seoul National Univ.) Ca+
Tiangang Yang (Southern Univ. of Science & Technology) molecular ions
Luming Duan (Tsinghua Univ.) Ca+, Yb+
Kihwan Kim (Tsinghua Univ.) Ba+, Yb+
Guang-Can Guo (Univ. Science & Technology of China) Yb+
Shuichi Hasegawa (Univ. of Tokyo) Sr+
Atsushi Noguchi (Univ. of Tokyo) Ca+
Roee Ozeri (Weizmann Institute) Sr+
Daniel Zajfman (Weizmann Institute) molecular ions
Mang Feng (Wuhan Inst. of Physics and Math) Ca+
Li Jiomei (Wuhan Inst. of Physics and Math) Hg+
Gao Kelin (Wuhan Inst. of Physics and Math) Ca+
Huang Zueren (Wuhan Inst. of Physics and Math) Ca+, Al+

Australia:
Michael Biercuk (Univ. of Sydney) Be+, Yb+
Erik Streed & Mirko Lobina (Griffith Univ.) Yb+

Africa:
Herman Uys (Stellenbosch University) Yb+

South America:
Juan Pablo Paz (Univ. of Buenos Aires) Ca+

Private Industry:
Honeywell (Broomfield, CO & Golden Valley, MN) Yb+, Ba+
IonQ (College Park, MD) Yb+

Did we forget you? Email us (iontrapping@afresearchlab.com)
*For informational purposes only

REFERENCES

General ion trap physics:
Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions," D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, and D.M. Meekhof, Journal of Research of the National Institute of Standards and Technology 103, 259 (1998). 

Yb+ ion spectroscopy and qubit operation:
"Manipulation and detection of a trapped ytterbium hyperfine qubit," S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, and C. Monroe. Phys. Rev. A 76 052314 (2007). [arXiv]

Ba+ ion spectroscopy and qubit operation:
"High-fidelity manipulation of qubit enabled by a manufactured nucleus," J.E. Christensen, D. Hucul, W.C. Campbell, E.R. Hudson. npj Quantum Inf., 6 35 (2020).
"Spectroscopy of a synthetic trapped ion qubit," D. Hucul, J.E. Christense, E.R. Hudson, W.C. Campbell. Phys. Rev. Lett. 119 100501 (2017). [arxiv]

Quantum networking:
"Remote entanglement of trapped atomic ions." D.L Moehring. PhD Thesis, University of Michigan (2007).
"Quantum teleportation between distant matter qubits." S. Olmschenk. PhD Thesis, University of Michigan (2009).
"Quantum eraser: a proposed photon correlation experiment concerning observation and 'delayed choice' in quantum mechanics." M.O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
"Creation of entangled states of distant atoms by interference." C. Cabrillo, J.I. Cirac, P. Garcia-Fernandez, P. Zoller. Phys. Rev A 59, 1025 (1999). [arxiv]
"Robust long-distance entanglement and a loophole-free test with ions and photons." Phys. Rev. Lett. 91, 110405 (2003). [arxiv]
"Quantum interference of photon pairs from two remote trapped atomic ions." P. Maunz, D.L. Moehring, S. Olmschenk, K.C. Younge, D.N. Matsukevich, and C. Monroe. Nature Phys. 3, 538 (2007).
"Entanglement of single-atom quantum bits at a distance," D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, and C. Monroe, Nature 449 68 (2007). 
"Bell inequality violation with two remote atomic qubits," D.N. Matsukevich, P. Maunz, D.L. Moehring, S. Olmschenk, and C. Monroe. Phys. Rev. Lett. 100, 150404 (2008). [arxiv]
"Quantum teleportation between distant matter qubits," S. Olmschenk, D.N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, Science 323, 486 (2009).  [arxiv]
"Protocols and techniques for a scalable atom-photon quantum network," L. Luo, D. Hayes, T.A. Manning, D.N. Matsukevich, P. Maunz, S. Olmschenk, J.D. Sterk, and C. Monroe, Fortschr. Phy. 57, 11 (2009). [arxiv]
"Quantum gates with phase stability over space and time," I.V. Inlek, G. Vittorini, D. Hucul, C. Crocker, and C. Monroe. Phys. Rev. A 90, 042316 (2014). [arxiv]
"Entanglement of distinguishable quantum memories," G. Vittorini, D. Hucul, I.V. Inlek, C. Crocker, and C. Monroe, Phys. Rev. A 90, 040302(R) (2014). [arxiv]
"Modular Entanglement of atomic qubits using photons and phonons," D. Hucul, I.V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S.M. Clark, and C. Monroe, Nature Physics 11, 37 (2015). [arxiv]

Quantum Physics:
John Preskill's Quantum Computing lecture notes.
 

ION PERIODIC TABLE

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Period
1

1
H

 

2
He

2

3
Li

4
Be

 

5
B

6
C

7
N

8
O

9
F

10
Ne

3

11
Na

12
Mg

13
Al

14
Si

15
P

16
S

17
Cl

18
Ar

4

19
K

20
Ca

21
Sc

22
Ti

23
V

24
Cr

25
Mn

26
Fe

27
Co

28
Ni

29
Cu

30
Zn

31
Ga

32
Ge

33
As

34
Se

35
Br

36
Kr

5

37
Rb

38
Sr

39
Y

40
Zr

41
Nb

42
Mo

43
Tc

44
Ru

45
Rh

46
Pd

47
Ag

48
Cd

49
In

50
Sn

51
Sb

52
Te

53
I

54
Xe

6

55
Cs

56
Ba

57-71

72
Hf

73
Ta

74
W

75
Re

76
Os

77
Ir

78
Pt

79
Au

80
Hg

81
Tl

82
Pb

83
Bi

84
Po

85
At

86
Rn

7

87
Fr

88
Ra

89-103

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Nh

114
Fl

115
Mc

116
Lv

117
Ts

118
Og

 

 

 

57
La

58
Ce

59
Pr

60
Nd

61
Pm

62
Sm

63
Eu

64
Gd

65
Tb

66
Dy

67
Ho

68
Er

69
Tm

70
Yb

71
Lu

 

 

89
Ac

90
Th

91
Pa

92
U

93
Np

94
Pu

95
Am

96
Cm

97
Bk

98
Cf

99
Es

100
Fm

101
Md

102
No

103
Lr

 

 

Barium

Isotope

Abundance

Nuclear Spin

138

71.7

0

137

11.2

3/2

136

7.9

0

135

6.6

3/2

134

2.4

0

133

0.0

1/2

132

0.1

0

130

0.1

0


Ytterbium

Isotope Abundance Nuclear Spin
176 12.8 0
174 31.8 0
173 16.1 5/2
172 21.8 0
171 14.3 1/2
170 3.0 0
168 0.1 0


Beryllium

Isotope Abundance Nuclear Spin
9 100 3/2


Magnesium

Isotope Abundance Nuclear Spin
26 11 0
25 10 0
24 79 5/2


Calcium

Isotope Abundance Nuclear Spin
48 0.2 0
44 2.1 0
43 0.1 7/2
42 0.6 0
40 96.9 0


Strontium

Isotope Abundance Nuclear Spin
88 82.6 0
87 7 9/2
86 9.9 5/2


Radium

Isotope Half-life Nuclear Spin
228 5.74 yr 0
226 1600 yr 0
225 14.9 d 1/2
224 87.2 h 0
223 11.4 d 3/2


Zinc

Isotope Abundance Nuclear Spin
68 18.6 0
67 4.1 5/2
66 27.9 0
64 48.6 0


Cadmium

Isotope Abundance Nuclear Spin
116 7.5 0
114 28.7 0
113 12.2 1/2
112 24.1 0
111 12.8 1/2
110 12.5 0


Mercury

Isotope Abundance Nuclear Spin
204 6.9 0
202 29.9 0
201 12.2 3/2
200 24.1 0
199 16.9 1/2
198 10.0 0


Boron

Isotope Abundance Nuclear Spin
11 80.1 3/2
10 19.9 3


Aluminum

Isotope Abundance Nuclear Spin
27 100 5/2


Indium

Isotope Abundance Nuclear Spin
115 95.7 9/2
113 4.3 9/2


Gallium

Isotope Abundance Nuclear Spin
71 39.9 3/2
69 60.1 3/2


Lanthanum

Isotope Abundance Nuclear Spin
139 99.9 7/2
138 0.1 5


Lutetium

Isotope Abundance Nuclear Spin
176 97.4 7
175 2.6 7/2

CLICK HERE to visit our other quantum labs.

CLICK HERE to return to the Trapped Ion page.