AFRL/RITQ - UltraCold Atoms


AFRL’s Quantum Sensing & Timing (QST) group seeks to take advantage of Nobel-Prize winning cold-atoms physics and related techniques to develop solutions for critical DoD problems in positioning, navigation and timing.

In 2014, the QST team demonstrated the first realization in a DoD laboratory of a macroscopic quantum wavefunction known as Bose-Einstein Condensate (BEC). Although the realization of BEC, also known as the 5th state of matter, has inspired far-fetched science fiction entertainment already, the fundamental properties of these ultracold atoms provide exquisite insight into the quantum behavior of atoms. 

Ultracold atoms offer excellent sensory information about the magnetic, electric, inertial, and gravitational environments within which the atoms reside. As such, quantum sensors based on ultracold atoms have the potential to significantly impact a variety of military and civilian applications.

The QST group seeks to develop compact quantum systems that allow transition into real-world applications.

Ongoing QST ultracold atoms efforts include the development of high-confinement atom chips, quantum-sensor experiments with BEC, cavity quantum electrodynamics and advancement of new laser-cooling and trapping techniques.

CLICK HERE to visit our other quantum labs.

image of team

Dr. Spencer Olson, AFRL Senior Research Physicist / QST Group Lead
Dr. Matthew Squires, AFRL Senior Research Physicist / Quantum Sensing Lead
Dr. Brian Kasch, AFRL Research Physicist
Mr. Stacy Schramm, AFRL Engineering Technician

Dr. Rudy Kohn, Space Dynamics Laboratory Research Physicist
Dr. James Stickney, Space Dynamics Laboratory Research Physicist
Dr. Francisco Fonta, Space Dynamics Laboratory Research Physicist
Dr. Kimberley Frey, Space Dynamics Laboratory Research Physicist
Dr. Robert Leonard, Space Dynamics Laboratory Research Physicist
Dr. David Brown, National Research Council Postdoctoral Research Associate
Dr. Stephen Taylor, National Research Council Postdoctoral Research Associate
Mr. Matthew Marshall, University of New Mexico Ph.D. student
Ms. Meagan Parker, University of New Mexico Ph.D. student
Mr. Johnathan White, Space Dynamics Laboratory Lab Technician
Mr. Michael Goulette, Space Dynamics Laboratory Lab Technician

• D. Hostutler, M. Bigelow, R. N. Kohn, S. E. Olson, M. B. Squires, D. R. Blakley, E. A. Imhof, B. L. Kasch, M. Spanjers, Elemental Alkali-Metal Dispenser, U.S. Patent Application 16/700,872.
• E. A. Imhof, M. B. Squires, S. E. Olson, J. A. Stickney, Customizable Slowing Process Using Only Magnetic Fields to Remove Energy from an Atomic or Molecular Beam, U.S. Patent Application No.  14/304,857.
• M. B. Squires, J. A. Stickney, B. Kasch, System and method for creating a predetermined magnetic potential, U.S. Patent US9510437B1
• M. B. Squires, Positioning of an optical beam to mitigate hysteresis, U.S. Patent US10495829B1

• R. N. Kohn Jr, M. S. Bigelow, M. Spanjers, B. K. Stuhl, B. L. Kasch, S. E. Olson, E. A. Imhof, D. A. Hostutler, M. B. Squires, Clean, robust alkali sources by intercalation within highly oriented pyrolytic graphite, Rev. of Sci. Instr., 91(3), p.035108 (2020)
• J. A. Stickney, B. L. Kasch, E. A. Imhof, B. R. Kroese, J. A. R.  Crow, S. E.  Olson, M.~B. Squires, Tunable axial potentials for atom chip waveguides, Phys. Rev. A, 96, 053606 (2017)
• E. Imhof, B. K. Stuhl, B. L. Kasch, B. Kroese, S. E. Olson, and M. B. Squires, Two-dimensional grating magneto-optical trap, Phys. Rev. A, 96(3), p.033636 (2017)
• Imhof, E.; Stickney, J.; Squires, M.,  A Wigner Function Approach to Coherence in a Talbot-Lau Interferometer, Atoms 2016, 4, 18.
• M. B. Squires, B. L. Kasch, S. E Olson, J. A. Stickney, On the stability of atom chip interferometers, 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS), dio:10.1109/ISISS.2015.7102388 (2015)
• S. E. Olson, G. Raithel, and A. J. Christlieb, Pressure-Driven Evaporative Cooling in Atom Guides, Phys. Rev. A 90, 4, 043612, doi:10.1103/PhysRevA.90.043612 (2014)
• S. E. Olson, A. J. Christlieb, and F. K. Fatemi, PID Feedback for Load-Balanced Parallel Gridless DSMC, Comp. Phy. Comm, 181, 12, 2063--2071, doi:10.1016/j.cpc.2010.06.045 (2010)